当前位置: > 微分方程e^(y^2+x)dx+ydy=0...
题目
微分方程e^(y^2+x)dx+ydy=0

提问时间:2020-11-08

答案
∵e^(y^2+x)dx+ydy=0
==>e^(y^2)*e^xdx=-ydy
==>-2ye^(-y^2)dy=2e^xdx
==>e^(-y^2)d(-y^2)=2e^xdx
==>e^(-y^2)=2e^x+C (C是常数)
∴原方程的通解是e^(-y^2)=2e^x+C.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.