当前位置: > 过抛物线C:y=4x的焦点F作倾斜角为2π/3的直线交抛物线C于A,B两点,点D在抛物线C的准线L运动...
题目
过抛物线C:y=4x的焦点F作倾斜角为2π/3的直线交抛物线C于A,B两点,点D在抛物线C的准线L运动
,若AD⊥BD,求点D的坐标

提问时间:2020-11-08

答案
由y2=4x得准线为x=-1所以令D(-1,m)因为直线倾斜角为120度所以令直线方程为y=-根号3(x-1)联立y2=4x得A(3,-2根号3)B(1/3,2根号3/3)因为AD垂直BD所以向量AD*向量BD=0所以(xa+1,ya-m)*(xb+1,yb-m)=0带入数据...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.