当前位置: > 不等式放缩.明天早上之前做出来的,追加50分.证明:1/2n^2+3n+1小于5/12 前面的2n^2+3n+1是分母....
题目
不等式放缩.明天早上之前做出来的,追加50分.证明:1/2n^2+3n+1小于5/12 前面的2n^2+3n+1是分母.
证明:1/2n^2+3n+1小于5/12 n属于N+ 前面的2n^2+3n+1是分母.
求和。

提问时间:2020-11-07

答案
1/(2n^2+3n+1)
=1/[(2n+1)(n+1)]=2*1/[(2n+1)(2n+2)]=2[1/(2n+1)-1/(2n+2)]
求和=2(1/3-1/4+1/5-1/6+1/7……)
记a=1/3-1/4+1/5-1/6+1/7……
a=1/3-1/4+(1/5-1/6)+(1/7-1/8)+.
1/[(n+1)(n+2)]
=1/(n+1)-1/(n+2) )
=1/12+(1/3-a)
所以2a
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.