题目
若关于x的不等式(1+k2)x≤k4+4的解集是M,则对任意实常数k,总有( )
A. 2∈M,0∈M
B. 2∉M,0∉M
C. 2∈M,0∉M
D. 2∉M,0∈M
A. 2∈M,0∈M
B. 2∉M,0∉M
C. 2∈M,0∉M
D. 2∉M,0∈M
提问时间:2020-11-07
答案
方法1:代入判断法,将x=2,x=0分别代入不等式中,判断关于k的不等式解集是
否为R;
方法2:求出不等式的解集:(1+k2)x≤k4+4⇒x≤
=(k2+1)+
−2⇒x≤[(k2+1)+
−2]min=2
否为R;
方法2:求出不等式的解集:(1+k2)x≤k4+4⇒x≤
k4+4 |
k2+1 |
5 |
k2+1 |
5 |
k2+1 |
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好 奥巴马演讲不用看稿子.为什么中国领导演讲要看? 想找英语初三上学期的首字母填空练习…… 英语翻译 1,人们染上烟瘾,最终因吸烟使自己丧命. 最新试题
热门考点
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
|