当前位置: > 探索规律: 观察下面由“※”组成的图案和算式,解答问题: (1)请猜想1+3+5+7+9+…+19=_; (2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=_; (3)请用...
题目
探索规律:
观察下面由“※”组成的图案和算式,解答问题:

(1)请猜想1+3+5+7+9+…+19=______;
(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=______;
(3)请用上述规律计算:103+105+107+…+2007+2009=______.

提问时间:2020-11-07

答案
(1)由图片知:
第1个图案所代表的算式为:1=12
第2个图案所代表的算式为:1+3=4=22
第3个图案所代表的算式为:1+3+5=9=32

依此类推:第n个图案所代表的算式为:1+3+5+…+(2n-1)=n2
故当2n-1=19,即n=10时,1+3+5+…+19=102
(2)由(1)可知:1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=(n+2)2
(3)103+105+107+…+2007+2009
=(1+3+…+2007+2009)-(1+3+…+99+101)
=10052-512
=1007424.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.