题目
在三角形ABC中,角A=90度,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M.N在移动,且在移动时
保持AN=BM,请你判断三角形OMN的形状,并说明理由
保持AN=BM,请你判断三角形OMN的形状,并说明理由
提问时间:2020-11-07
答案
三角形OMN为等腰直角三角形
证明:连结AO,
因为AO=BO(易证),角OBM=角OAN(易证),BM=AN,所以三角形OBM全等于三角形OAN
所以ON=OM,角AON=角BOM,因为角BOM+角MOA=90度(易证),所以角AON+角MOA=90度,所以三角形OMN为等腰直角三角形
证明:连结AO,
因为AO=BO(易证),角OBM=角OAN(易证),BM=AN,所以三角形OBM全等于三角形OAN
所以ON=OM,角AON=角BOM,因为角BOM+角MOA=90度(易证),所以角AON+角MOA=90度,所以三角形OMN为等腰直角三角形
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点