当前位置: > 若四条不同的直线相交于一点,则可形成几对对顶角?n条不同的直线相交于一点呢?...
题目
若四条不同的直线相交于一点,则可形成几对对顶角?n条不同的直线相交于一点呢?

提问时间:2020-11-07

答案
两条直线相交于一点形成2对对顶角;
三条直线相交于一点可看成是三种两条直线相交于一点的情况,所以形成6对对顶角;
四条直线相交于一点可看成是六种两条直线相交于一点的情况,所以形成12对对顶角;
n条直线相交于一点可看成是
n(n−1)
2
种两条直线相交于一点的情况,所以形成n(n-1)对对顶角.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.