当前位置: > 二阶导函数连续可推出三阶可导吗?...
题目
二阶导函数连续可推出三阶可导吗?
我是从一道题中想到的这个问题,
设函数f(x)满足关系式f''(x)+[f'(x)]^2=x,且f'(0)=0,则:点(0,f(0))是曲线y=f(x)的拐点
给出的解题步骤是:
f''(0)=0,f''(x)可导,f'''(x)=1-2f'(x)f''(x),f'''(0)=1>0
【我的疑问】:题目中没有说3阶可导,为什么解题里直接可以求3阶导数呢?是因为已知给出的是f''(x)的关系式(关于x,而不是某一个x0点),所以表明2阶导函数连续?继而由2阶导函数连续可推出3阶可导吗?

提问时间:2020-11-07

答案
f''(x)= x- [f'(x)]^2 注意这个式子 可以看出式子右边是可导的(因为2阶可导) 所以才有f''(x)可导 所以三阶可导
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.