当前位置: > 已知椭圆x^2/4+y^2/3=1的内接平行四边形的一组对边分别过椭圆的焦点F1,F2,求该平行四边形面积的最大值...
题目
已知椭圆x^2/4+y^2/3=1的内接平行四边形的一组对边分别过椭圆的焦点F1,F2,求该平行四边形面积的最大值

提问时间:2020-11-07

答案

设过焦点的边倾斜角为x,设这条边为AB.不妨设x≤90°
由椭圆焦点弦公式有:
AB=2ab²/(a²-c²cosx)=12/(4-cosx)
而另一个焦点在AB上的高为2c·sinx=2sinx
所以平行四边形面积为24sinx/(4-cosx)
求导,得cosx(4-cosx)-sin²x=0
即4cosx=1,
所以平行四边形面积的最大值为
8√15/5(8倍5分之根号15)
即为所求
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.