当前位置: > 线性代数 求特征值与特征向量...
题目
线性代数 求特征值与特征向量
A=-2 1 1 [ λE-A]=0 λ1=-1 λ2=λ3=2
0 2 0
-4 1 3
当λ1=-1时
-E-A=1 -1 -1这个变换之后是1 0 -1 之后得到基础解系p1=1
0 -3 0 0 1 0 0
4 -1 -4 0 0 0 1
只要讲一下基础解析怎么得到就行了
p1=1 0 1

提问时间:2020-11-06

答案
1 0 -1
0 1 0
0 0 0
非零行的首非零元所在列对应的未知量是约束变量,这里即 x1,x2
其余变量为自由未知量,这里是 x3
行简化梯矩阵对应同解方程组:
x1 = x3
x2 = 0
令自由未知量x3=1所得的解就是基础解系,即 (1,0,1)'.
事实上,当只有一个自由未知量时,可令它取任一个非零的数,所得的解都是基础解系.
比如 x3=-1时,基础解系为 (-1,0,-1).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.