当前位置: > 设A是n阶方阵,α1,α2...αn是n个线性无关的n维向量,证明rankA=n的充分必要条件是Aα1,Aα2,.,Aαn也线性无关....
题目
设A是n阶方阵,α1,α2...αn是n个线性无关的n维向量,证明rankA=n的充分必要条件是Aα1,Aα2,.,Aαn也线性无关.

提问时间:2020-11-06

答案
若,α1,α2...αn线性无关,令k1Aa1+k2Aa2+---+knAan=0得 A(k1a1+k2a2+---+knan)=0,(1)由rankA=n可知A可逆,将(1)式两边左乘A的逆,得k1a1+k2a2+---+knan=0由α1,α2...αn是n个线性无关可得k1=k2=---=kn=0,所以Aα1,...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.