当前位置: > 已知对于任意正整数n,有a1+a2+a3...+an=n^3,求(1/a2-1)+(1/a3-1)+...+(1/a100-1)的值....
题目
已知对于任意正整数n,有a1+a2+a3...+an=n^3,求(1/a2-1)+(1/a3-1)+...+(1/a100-1)的值.
括号里面的/表示分数线,/前面的表示分子,/后面的表示分母.

提问时间:2020-11-06

答案
an=n^3-(n-1)^3=3n^2-3n+1an-1=3n^2-3n=3n(n-1)1/(an-1)=[1/(n-1)-1/n]/31/(a2-1)+1/(a3-1)+...+1/(a100-1)=[(1/1-1/2)+(1/2-1/3)+...+(1/99-1/100)]/3=(1-1/100)/3=33/100
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.