题目
在△ABC中,若(a2+b2)sin(A-B)=(a2-b2)•sinC,则△ABC是( )
A. 等腰三角形
B. 直角三角形
C. 等腰直角三角形
D. 等腰三角形或直角三角形
A. 等腰三角形
B. 直角三角形
C. 等腰直角三角形
D. 等腰三角形或直角三角形
提问时间:2020-11-06
答案
∵(a2+b2)sin(A-B)=(a2-b2)sinC,
∴(a2+b2)(sinAcosB-cosAsinB)=(a2-b2)(sinAcosB+cosAsinB),
可得sinAcosB(a2+b2-a2+b2)=cosAsinB(a2-b2+a2+b2).
即2b2sinAcosB=2a2cosAsinB…(*)
根据正弦定理,得bsinA=asinB
∴化简(*)式,得bcosB=acosA
即2RsinBcosB=2RsinAcosA,(2R为△ABC外接圆的半径)
化简得sin2A=sin2B,
∴A=B或2A+2B=180°,即A=B或A+B=90°
因此△ABC是等腰三角形或直角三角形.
故选:D
∴(a2+b2)(sinAcosB-cosAsinB)=(a2-b2)(sinAcosB+cosAsinB),
可得sinAcosB(a2+b2-a2+b2)=cosAsinB(a2-b2+a2+b2).
即2b2sinAcosB=2a2cosAsinB…(*)
根据正弦定理,得bsinA=asinB
∴化简(*)式,得bcosB=acosA
即2RsinBcosB=2RsinAcosA,(2R为△ABC外接圆的半径)
化简得sin2A=sin2B,
∴A=B或2A+2B=180°,即A=B或A+B=90°
因此△ABC是等腰三角形或直角三角形.
故选:D
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1it is boring clean the rooms every day对吗
- 2比较匀速直线运动,匀变速直线运动,变加速直线运动
- 3英语翻译
- 4We——some shapes(形状)——the eyes,the nose and the sharp teeth.
- 5英语翻译Everyone else in my class was invited except me
- 6为什么用将相和做题目
- 7将2006进行如下操作:
- 8一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.
- 9Nancy is a middie school student.(中文)
- 10What do you think is the most interesting subject?Why?