当前位置: > 二次函数f(x)满足f(2+x)=f(2-x),且f(2)=1,f(0)=3,若f(x)在【0,m】上有最小值1,最大值3,则m的取值范围...
题目
二次函数f(x)满足f(2+x)=f(2-x),且f(2)=1,f(0)=3,若f(x)在【0,m】上有最小值1,最大值3,则m的取值范围

提问时间:2020-11-06

答案
因为二次函数f(x)满足f(2+x)=f(2-x)
所以二次函数以x=2为对称轴
所以f(2)=1为函数最小值
因为f(0)=3所以f(4)=3
画个图可以知道2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.