当前位置: > 求微分方程的通解 {[e^(x+y)]-e^x}dx+{[e^(x+y)]+ey}dy=0 答案是(e^x+1)(e^y+1)=c...
题目
求微分方程的通解 {[e^(x+y)]-e^x}dx+{[e^(x+y)]+ey}dy=0 答案是(e^x+1)(e^y+1)=c

提问时间:2020-11-06

答案
[e^(x+y) -e^x]dx +[e^(x+y) +e^y]dy=0
(e^y-1)de^x+(e^x+1)de^y=0
de^x/(e^x+1) +de^y/(e^y-1)=0
dln(e^x+1)+dln(e^y-1)=0
ln(e^x+1)+ln(e^y-1)=C0
(e^x+1)(e^y-1)=C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.