题目
八(1)班同学上数学活动课,利用角尺平分一个角
提问时间:2020-11-06
答案
证明:在△OPM和△OPN中
OM=ON PM=PN OP=OP
∴△OPM≌△OPN(SSS),
∴∠AOP=∠BOP(全等三角形对应角相等)(5分);
∴OP就是∠AOB的平分线.
(2)当∠AOB是直角时,方案(Ⅰ)可行.
∵四边形内角和为360°,又若PM⊥OA,PN⊥OB,∠OMP=∠ONP=90°,∠MPN=90°,
∴∠AOB=90°,
∵若PM⊥OA,PN⊥OB,
且PM=PN,
∴OP为∠AOB的平分线(到角两边距离相等的点在这个角的角平分线上);
当∠AOB不为直角时,此方案不可行.
=-------------------------
答:(1)方案(Ⅰ)不可行.缺少证明三角形全等的条件,
∵只有OP=OP,PM=PN不能判断△OPM≌△OPN;
∴就不能判定OP就是∠AOB的平分线;
方案(Ⅱ)可行.
证明:在△OPM和△OPN中
$left{egin{array}{l}OM=ON\PM=PN\OP=OPend{array} ight.$
∴△OPM≌△OPN(SSS),
∴∠AOP=∠BOP(全等三角形对应角相等)(5分);
∴OP就是∠AOB的平分线.
(2)当∠AOB是直角时,方案(Ⅰ)可行.
∵四边形内角和为360°,又若PM⊥OA,PN⊥OB,∠OMP=∠ONP=90°,∠MPN=90°,
∴∠AOB=90°,
∵若PM⊥OA,PN⊥OB,
且PM=PN,
∴OP为∠AOB的平分线(到角两边距离相等的点在这个角的角平分线上);
当∠AOB为直角时,此方案可行.
OM=ON PM=PN OP=OP
∴△OPM≌△OPN(SSS),
∴∠AOP=∠BOP(全等三角形对应角相等)(5分);
∴OP就是∠AOB的平分线.
(2)当∠AOB是直角时,方案(Ⅰ)可行.
∵四边形内角和为360°,又若PM⊥OA,PN⊥OB,∠OMP=∠ONP=90°,∠MPN=90°,
∴∠AOB=90°,
∵若PM⊥OA,PN⊥OB,
且PM=PN,
∴OP为∠AOB的平分线(到角两边距离相等的点在这个角的角平分线上);
当∠AOB不为直角时,此方案不可行.
=-------------------------
答:(1)方案(Ⅰ)不可行.缺少证明三角形全等的条件,
∵只有OP=OP,PM=PN不能判断△OPM≌△OPN;
∴就不能判定OP就是∠AOB的平分线;
方案(Ⅱ)可行.
证明:在△OPM和△OPN中
$left{egin{array}{l}OM=ON\PM=PN\OP=OPend{array} ight.$
∴△OPM≌△OPN(SSS),
∴∠AOP=∠BOP(全等三角形对应角相等)(5分);
∴OP就是∠AOB的平分线.
(2)当∠AOB是直角时,方案(Ⅰ)可行.
∵四边形内角和为360°,又若PM⊥OA,PN⊥OB,∠OMP=∠ONP=90°,∠MPN=90°,
∴∠AOB=90°,
∵若PM⊥OA,PN⊥OB,
且PM=PN,
∴OP为∠AOB的平分线(到角两边距离相等的点在这个角的角平分线上);
当∠AOB为直角时,此方案可行.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1In order to balance the stud and enterainments ,ever student is supposed to plan the time____.
- 2某烃0.2mol在氧气中充分燃烧后,生成化合物B,C各1.2mol,试完成下列问题
- 3什么词语能形容琴技的高超
- 4设a∈R,解关于x的不等式x(x-a+1)
- 5高考作文《生命的养分》请问立意为:无私的奉献是生命的养分可以吗?
- 6黯然缥缈中 黯
- 7比较大小 √7_____³√28
- 8海陆位置不同影响什么?紧扣八年级上册湘教版地理回答
- 9一列数2分之1,17分之1·····,第2008个数是多少?
- 10碳还原金属氧化物,什么时候产生一氧化碳