当前位置: > 正方形ABCD中∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC于点M,N,连接BD交AM于E,交AN于F...
题目
正方形ABCD中∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC于点M,N,连接BD交AM于E,交AN于F
已经证得EF平方=BE平方+DF平方.另一个是三角形AMN面积是三角形AEF面积的2倍证明还未想出~谁有提示没.

提问时间:2020-11-06

答案
连接NE,由F点向AM作垂线,垂足为G,连接MF
∵∠MAN=∠BDC=45°
∠AFE=∠DFN(公共角)
∴△AEF∽△DFN
∴AF:DF=EF:FN
在△AFD与△EFN中
∵∠EFN=∠AFD
∴△EFN∽△AFD
∴∠FEN=∠DAN
∵∠AEF=∠DNA
且∠DAN+∠DNA=90°
∴∠AEF+∠FEN=90°(即AEND四点共圆)
∴NE⊥AM
∵∠MAN=45°
∴△AEN是等腰直角三角形
∴AE=EN
同理可证ABMF四点共圆
∴MF⊥AN
∵∠MAN=45°
∴△MAF是等腰直角三角形
∴FG=(1/2)AM
S△AEF=(1/2)GF×AE=(1/2)EN×(1/2)AM=(1/4)EN×AM
S△AMN=(1/2)AM×EN
∴S△AEF:S△AMN=(1/4)EN×AM/[(1/2)EN×AM]
∴S△AEF:S△AMN=1/2
(最后求面积比可以用两边积的一半与夹角的正弦的积更简单些,只是我级别低不能上传入图片)给分吧!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.