题目
Cn=bn/an,求数列Cn的前n项和Tn
an=(2)n次方 bn=3n-1
an=(2)n次方 bn=3n-1
提问时间:2020-11-05
答案
an=2^n,bn=3n-1,cn=bn/an
所以 Tn= 2/2 +5/2^2 +8/2^3 +11/2^4 +...+(3n-1)/2^n
所以 2Tn=2 +5/2 +8/2^2 +11/2^3 +...+(3n-1)/2^(n-1)
所以 Tn=2Tn-Tn=2 +(5-2)/2 +(8-5)/2^2 +(11-8)/2^3 +...+(3n-1-3n+4)/2^(n-1) -(3n-1)/2^n
所以 Tn=2 +3*[1/2 +1/4 +1/8 +...+1/2^(n-1)] -(3n-1)/2^n
所以 Tn=2 +3*(1/2)*[1 -(1/2)^(n-1)]/(1 -1/2) -(3n-1)/2^n
所以 Tn=2 +3*[1 -2^(1-n)] -(3n-1)*2(-n)
所以 Tn=2 +3 -6*2^(-n) -(3n-1)*2^(-n)
所以 Tn=5 -(3n+5)*2^(-n)
检验:
an=2,4,8,16,32,.
bn=2,5,8,11,14,.
cn=1,5/4,1,11/16,7/16,.
Tn=1,9/4,13/4,63/16,35/8,.
Tn通项公式中:
T1=5 -(3*1+5)*2^(-1)=5 -8/2=1
T2=5 -(3*2+5)*2^(-2)=5 -11/4=9/4
T3=5 -(3*3+5)*2^(-3)=5 -7/4=13/4
T4=5 -(3*4+5)*2^(-4)=5 -17/16=63/16
T5=5 -(3*5+5)*2^(-5)=5 -5/8=35/8
.符合
所以 Tn= 2/2 +5/2^2 +8/2^3 +11/2^4 +...+(3n-1)/2^n
所以 2Tn=2 +5/2 +8/2^2 +11/2^3 +...+(3n-1)/2^(n-1)
所以 Tn=2Tn-Tn=2 +(5-2)/2 +(8-5)/2^2 +(11-8)/2^3 +...+(3n-1-3n+4)/2^(n-1) -(3n-1)/2^n
所以 Tn=2 +3*[1/2 +1/4 +1/8 +...+1/2^(n-1)] -(3n-1)/2^n
所以 Tn=2 +3*(1/2)*[1 -(1/2)^(n-1)]/(1 -1/2) -(3n-1)/2^n
所以 Tn=2 +3*[1 -2^(1-n)] -(3n-1)*2(-n)
所以 Tn=2 +3 -6*2^(-n) -(3n-1)*2^(-n)
所以 Tn=5 -(3n+5)*2^(-n)
检验:
an=2,4,8,16,32,.
bn=2,5,8,11,14,.
cn=1,5/4,1,11/16,7/16,.
Tn=1,9/4,13/4,63/16,35/8,.
Tn通项公式中:
T1=5 -(3*1+5)*2^(-1)=5 -8/2=1
T2=5 -(3*2+5)*2^(-2)=5 -11/4=9/4
T3=5 -(3*3+5)*2^(-3)=5 -7/4=13/4
T4=5 -(3*4+5)*2^(-4)=5 -17/16=63/16
T5=5 -(3*5+5)*2^(-5)=5 -5/8=35/8
.符合
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1这个自行车是我曾经收到的最好的礼物.(英语翻译)
- 2函数f(x)=2−x+ln(x−1)的定义域为_.
- 3已知4a的平方减去3b的平方=7,3a的平方+2b的平方=19,求代数式14a的平方-2b的平方.22从哪来啊?解题中的
- 4求曲线y=x^2和曲线y^2=x所围成的平面图形的面积
- 5如图,已知点A、B、C是数轴上三点,O为原点.点C对应的数为6,BC=4,AB=12. (1)求点A、B对应的数;(2)动点P、Q分别同时从A、C出发,分别以每秒6个单位和3个单位的速度沿数轴正方向运
- 6标题(共1条) 回答数 状态 提问时间
- 7使用显微镜能不能观察到人的口腔上皮细胞中的线粒体?为什么?
- 8Why have you come to China?
- 9求一篇关于我的旅行的英语作文,60词左右.要求初中水平
- 10ball是可数还是不可数?还有table tennis club是可数还是不可数?