题目
如图2,三角形OAB固定不动,保持三角形OCD的形状和大小不变将三角形OCD绕着点O旋转(三角形OAB和三角形OCD
提问时间:2020-11-05
答案
∵△DOC和△ABO都是等边三角形,
∴OD=OC,OB=OA,∠1=∠2=60°.
又∵OD=OA,
∴OD=OB,OA=OC,
∴∠4=∠5,∠6=∠7.
∵∠DOB=∠1+∠3,
∠AOC=∠2+∠3,
∴∠DOB=∠AOC.
∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,
∴2∠5=2∠6,
∴∠5=∠6.
又∵∠AEB=∠8-∠5,∠8=∠2+∠6,
∴∠AEB=∠2+∠6-∠5=∠2+∠5-∠5=∠2,
∴∠AEB=60°.
我们也在教这一课
∴OD=OC,OB=OA,∠1=∠2=60°.
又∵OD=OA,
∴OD=OB,OA=OC,
∴∠4=∠5,∠6=∠7.
∵∠DOB=∠1+∠3,
∠AOC=∠2+∠3,
∴∠DOB=∠AOC.
∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,
∴2∠5=2∠6,
∴∠5=∠6.
又∵∠AEB=∠8-∠5,∠8=∠2+∠6,
∴∠AEB=∠2+∠6-∠5=∠2+∠5-∠5=∠2,
∴∠AEB=60°.
我们也在教这一课
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1以风景为话题的作文
- 2太阳系中质量最大和最小的行星分别是什么?大约质量是多少?
- 3已知函数f(x)=2loga(x)和g(x)=loga(2x+t-2),(a>0,a≠1,t∈R)的图像在x=2处的切线互相平行 (1)求t的值
- 4Y鸿雁在云鱼在水,惆怅此情难寄,下句是什么呢?
- 5Could you please lend me your pen?(改为同义句) Could you please _____your pen________me?
- 6下列个物质燃烧时,不可使用泡沫灭火器,而要用液体二氧化碳灭火器扑灭的是?
- 7一个自由落体运动的物体下落的第一秒,第二秒,第三秒内的位移分别是多少?(g=10m/s)
- 8当班主任不在教室时的演讲
- 9河中石兽:尔辈不能究物理 物理的古义、今意
- 10如何解二元二次方程