题目
(好的追加分数)在线等微积分 1 已知lim(x趋于0)[[f(x)-1]/x-sinx/x^2]=2,求lim(x趋于0)f(x)
提问时间:2020-11-05
答案
2
lim(x趋于0)[[f(x)-1]/x-sinx/x^2]
=lim(x趋于0)[[xf(x)-x-sinx]/x^2]
=lim(x趋于0)[[f(x)-2]/x+(x-sinx)/x^2]
而lim(x趋于0)[x-sinx/x^2]
(利用洛毕达法则易得lim(x趋于0)[x-sinx/x^2]
=lim(x趋于0)[1-cosx/(2x)]=0)
则原式
=lim(x趋于0)[[f(x)-2]/x,
利用极限的定义可以知道,若要这个式子成立,则必须要
lim(x趋于0)[f(x)-2]=0
则lim(x趋于0)f(x)=2
lim(x趋于0)[[f(x)-1]/x-sinx/x^2]
=lim(x趋于0)[[xf(x)-x-sinx]/x^2]
=lim(x趋于0)[[f(x)-2]/x+(x-sinx)/x^2]
而lim(x趋于0)[x-sinx/x^2]
(利用洛毕达法则易得lim(x趋于0)[x-sinx/x^2]
=lim(x趋于0)[1-cosx/(2x)]=0)
则原式
=lim(x趋于0)[[f(x)-2]/x,
利用极限的定义可以知道,若要这个式子成立,则必须要
lim(x趋于0)[f(x)-2]=0
则lim(x趋于0)f(x)=2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1小球由地面竖直上抛,上升的最大高度H,设小球所受阴力大小恒定,选地面为零势能面,在上升至离地高度为h处,小球的动能是势能的两倍,在下落至离地离度为h处,小球的势能是动能的两倍,则h等于?
- 2一道初一数学题,急!十分钟后领答案.
- 3练习题 曹刿论战
- 4公元前340—公元前278是什么年代?
- 5写出两种计算时间的方法(古代)
- 6初中化学物质的中文名字和 对应着写下 很多化学式我都不知道是什么物质
- 7求证:如果一个一元二次方程的一次项系数等于二次项系数与常数项之和,则此方程必有一根是-1.
- 8若3倍向量OC-2倍向量OA=向量OB,则向量AC等于多少倍向量AB?
- 9Either of the two boys is clever!是指两个男孩都很聪明还是指两个男孩其中一个聪明.
- 10五年级下册语文书第三课小练笔