当前位置: > △ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ.(有多种辅助线作法)...
题目
△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ.(有多种辅助线作法)

提问时间:2020-11-05

答案
方法一、证明:延长AB到D,使BD=BP,连接PD,
则∠D=∠5.
∵AP,BQ分别是∠BAC,∠ABC的平分线,∠BAC=60°,∠ACB=40°,
∴∠1=∠2=30°,∠ABC=180°-60°-40°=80°,∠3=∠4=40°=∠C,
∴QB=QC,
又∠D+∠5=∠3+∠4=80°,
∴∠D=40°.
在△APD与△APC中,
∠D=∠C
∠2=∠1
AP=AP

∴△APD≌△APC(AAS),
∴AD=AC.
即AB+BD=AQ+QC,
∴AB+BP=BQ+AQ.
方法二、如图,
∴∠CBQ=
1
2
∠ABC=
1
2
×80°=40°,
∴∠CBQ=∠ACB,
∴BQ=CQ,
∴BQ+AQ=CQ+AQ=AC…①,
过点P作PD∥BQ交CQ于点D,
则∠CPD=∠CBQ=40°,
∴∠CPD=∠ACB=40°,
∴PD=CD,∠ADP=∠CPD+∠ACB=40°+40°=80°,
∵∠ABC=80°,
∴∠ABC=∠ADP,
∵AP平分∠BAC,
∴∠BAP=∠CAP,
∵在△ABP与△ADP中,
ABC=∠ADP
∠BAP=∠CAP
AP=AP

∴△ABP≌△ADP(AAS),
∴AB=AD,BP=PD,
∴AB+BP=AD+PD=AD+CD=AC…②,
由①②可得,BQ+AQ=AB+BP.
方法一、延长AB到D,使BD=BP,连接PD.则∠D=∠5.由已知条件不难算出:∠1=∠2=30°,∠3=∠4=40°=∠C.于是QB=QC.又∠D+∠5=∠3+∠4=80°,故∠D=40°.于是△APD≌△APC(AAS),所以AD=AC.即AB+BD=AQ+QC,等量代换即可得证;
方法二、根据三角形内角和定理求出∠ABC的度数,再根据角平分线的定义求出∠CBQ=40°,根据等角对等边的性质可得BQ=CQ,然后过点P作PD∥BQ,求出PD=CD,再利用“角角边”证明△ABP与△ADP全等,根据全等三角形对应边相等可得AB=AD,BP=PD,从而得证.

全等三角形的判定与性质;等腰三角形的判定与性质.

本题考查了全等三角形的性质和判定,三角形的内角和定理的应用,正确作辅助线好,构造全等三角形是解此题的关键,主要考查学生的推理能力,难度偏大.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.