题目
已知椭圆的左右焦点分别为F1,F2,离心率为e,若椭圆上存在一点P
椭圆x*2/a*2+y*2/b*2=1的左右焦点分别为F1,F2,离心率为e,若椭圆上存在点P,使得PF1/PF2=e,则该椭圆离心率的取值范围是?
点m是x*2/a*2+y*2/b*2=1(a>b>0)上的点,以M为圆心的圆与x轴相切于焦点F
,圆M与y轴相交于P,Q,若三角形PQM是钝角三角形,求该椭圆离心率的取值范围
椭圆x*2/a*2+y*2/b*2=1的左右焦点分别为F1,F2,离心率为e,若椭圆上存在点P,使得PF1/PF2=e,则该椭圆离心率的取值范围是?
点m是x*2/a*2+y*2/b*2=1(a>b>0)上的点,以M为圆心的圆与x轴相切于焦点F
,圆M与y轴相交于P,Q,若三角形PQM是钝角三角形,求该椭圆离心率的取值范围
提问时间:2020-11-05
答案
1.设PF1=x PF2=y(x<y)
由题 x+y=2a ...①
x/y=c/a ...②
y-x<2c ...③
由①②得 y=2a^2/(a+c) ...④
①③得 y<a+c ...⑤
联立④⑤得 a^2-c^2-2ac<0
同除以a^2得
1-e^2-2e<0
解得 -√2-1<e 或 e >√2-1
∵ 0<e<1
∴ √2-1<e<1
由题 x+y=2a ...①
x/y=c/a ...②
y-x<2c ...③
由①②得 y=2a^2/(a+c) ...④
①③得 y<a+c ...⑤
联立④⑤得 a^2-c^2-2ac<0
同除以a^2得
1-e^2-2e<0
解得 -√2-1<e 或 e >√2-1
∵ 0<e<1
∴ √2-1<e<1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1y=f(x)=x的平方+x,x=3,x=5
- 2my parents always encourage me to [a------] my dream
- 3我们老师经常说什么:Let sb do sth,try to do sth,want doing sth等
- 4在等式ax的二次方+bx+c中,当x=1时,y=1,x=-1时,y=-5,x=1/2时,y=-2,求y与x的关系式
- 5加工101个零件,合格率最高可达到
- 6我最喜欢的运动 英语作文 5句 短
- 7宰相肚里能撑船是什么意思?
- 8数学函数的,谁会啊,
- 9AB两地相距360千米,甲车从A地出发开往B地,速度为72千米每小时,甲车出发25分钟后,乙车从B地出发开往A地
- 10《太阳的话》这是__________诗
热门考点