当前位置: > 已知数列{an}满足,an=3an-1+3^2-1,且a3=95是否存在一个实数t,使得bn=13^n(an+t)且{bn}为等差数列...
题目
已知数列{an}满足,an=3an-1+3^2-1,且a3=95是否存在一个实数t,使得bn=13^n(an+t)且{bn}为等差数列

提问时间:2020-11-05

答案
如果原题中“an=3an-1+3^2-1”为an=3an-1+3^n-1,
则由an=3an-1+3^n-1
两边同除以3^n,化为
an/3^n=an-1/3^(n-1)+1-3^(-n)
则a2/3^2=a1/3^(2-1)+1-3^(-2)
a3/3^3=a2-1/3^(3-1)+1-3^(-3)
……
an/3^n=an-1/3^(n-1)+1-3^(-n)
上述(n-1)个式子累加化为:
an/3^n=a1/3^(2-1)+(n-1)-[3^(-2)+3^(-3)+……+3^(-n)]
=a1/3+(n-1)-[1/3-3^(-n)]
=a1/3+n-4/3+3^(-n)
则n>=2时,an=3^n*[a1/3+n-4/3+3^(-n)]
则a3=27*[a1/3+3-4/3+1/27]]=95,解得a1=79/9
an=3^n*[79/27+n-4/3+3^(-n)]
则bn=13^n(an+t)=(an+t)/3^n={3^n*[79/27+n-4/3+3^(-n)]+t}/3^n
bn要为等差数列,只需3^n*3^(-n)]+t=0,则t=-1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.