当前位置: > 数列{a},a(1)=2,a(n+1)=4a(n)--3n+1,n属于正整数.证明{a(n)--n}是等比数列;求数列{a(n)}的前n项和s...
题目
数列{a},a(1)=2,a(n+1)=4a(n)--3n+1,n属于正整数.证明{a(n)--n}是等比数列;求数列{a(n)}的前n项和s
小()代表下标

提问时间:2020-11-05

答案
大写字母后的小写字母代表下标
A(n+1)=4An-3n+1
A(n+1)-(n+1)=4An-3n+1-(n+1)
A(n+1)-(n+1)=4An-4n
A(n+1)-(n+1)=4(An-n)
所以 数列{An-n}是以4为公比的等比数列,首项(A1-1)=1
通项公式为:An-n=4^(n-1)
数列{An-n}前n项的和:Sn'=(1-4^n)/(1-4)=(4^n-1)/3
即:(A1-1)+(A2-2)+(A3-3)+...+(An-n)=(4^n-1)/3
所以 A1+A2+A3+...+An-(1+2+3+...+n)=(4^n-1)/3
所以 Sn=A1+A2+A3+...+An=(4^n-1)/3+n(n+1)/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.