当前位置: > 设一次函数y=3x-4与y=-x+3的交点为P,它们与x轴分别交于点A、B,试求△PAB的面积....
题目
设一次函数y=3x-4与y=-x+3的交点为P,它们与x轴分别交于点A、B,试求△PAB的面积.

提问时间:2020-11-05

答案
依题意有:
y=3x−4
y=−x+3

方程组的解为:
x=
7
4
y=
5
4

∴P(
7
4
5
4
),
又一次函数y=3x-4与x轴的交点A的坐标为(
4
3
,0),y=-x+3与x轴的交点B的坐标为(3,0),
∴AB=3-
4
3
=
5
3

过P作PE⊥AB于E,所以PE=
5
4

∴S△APB=
1
2
×AB×PE=
1
2
×
5
3
×
5
4
=
25
24
要求三角形PAB的面积,就要先知道P,A,B三点的坐标,由于已知两函数的解析式,因此可以求出这些点的坐标.

两条直线相交或平行问题.

本题考查的是利用一次函数的知识来求三角形的面积.根据函数的关系式求出相关的点的坐标就是解题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.