题目
如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动,点Q沿DA边从点D开始向
点D开始向点A以1cm/s的速度移动,如果p、Q同时出发,用t(s)表示运动时间(0≤t6≤),那么当t为何值时,以Q、A、p为定点的三角形与△ABC相似?
点D开始向点A以1cm/s的速度移动,如果p、Q同时出发,用t(s)表示运动时间(0≤t6≤),那么当t为何值时,以Q、A、p为定点的三角形与△ABC相似?
提问时间:2020-11-05
答案
分析:(1)只要把QA、AP用含t的代数式表示,利用QA=AP求解;(2)可以分别求出△QAC和△APC的面积;(3)同例4一样,要分两种情况求解.
(1)对于任何时刻t,AP=2t,DQ=t,QA=6-t.
当QA=AP时,△QAP为等腰直角三角形.
即6-t=2t.
解得t=2(秒).
所以当t=2秒时,△QAP为等腰直角三角形.
(2)在△QAC中,QA=6-t,QA边上的高DC=12,
∴S△QAC= QA•DC= (6-t)•12=36-6t.
∵在△APC中,AP=2t,BC=6,
∴S△APC= AP•BC= •2t•6=6t.
∴S四边形QAPC=S△QAC+S△APC=36-6t+6t=36(cm 2).
由计算结果发现:在P、Q两点的移动过程中,四边形QAPC的面积始终保持不变.(也可以提出:P、Q两点到对角线AC的距离之和保持不变)
(3)根据题意,可分为两种情况来求
当 时,△QAP∽△ABC.
∴ .
解得t=1.2(s).
∴当t=1.2 s时,△QAP∽△ABC.
当 时,△PAQ∽△ABC.
∴ .
解得t=3(秒).
∴当t=3 s时,△PAQ∽△ABC.
(1)对于任何时刻t,AP=2t,DQ=t,QA=6-t.
当QA=AP时,△QAP为等腰直角三角形.
即6-t=2t.
解得t=2(秒).
所以当t=2秒时,△QAP为等腰直角三角形.
(2)在△QAC中,QA=6-t,QA边上的高DC=12,
∴S△QAC= QA•DC= (6-t)•12=36-6t.
∵在△APC中,AP=2t,BC=6,
∴S△APC= AP•BC= •2t•6=6t.
∴S四边形QAPC=S△QAC+S△APC=36-6t+6t=36(cm 2).
由计算结果发现:在P、Q两点的移动过程中,四边形QAPC的面积始终保持不变.(也可以提出:P、Q两点到对角线AC的距离之和保持不变)
(3)根据题意,可分为两种情况来求
当 时,△QAP∽△ABC.
∴ .
解得t=1.2(s).
∴当t=1.2 s时,△QAP∽△ABC.
当 时,△PAQ∽△ABC.
∴ .
解得t=3(秒).
∴当t=3 s时,△PAQ∽△ABC.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1粤语读音
- 2如图,已知C点在线段AB的延长线上.且BC=1/3AB.D为AC的中点,若DC=4cm,求AB的长
- 3三个有理数,a,b,c,它们的积为负数,和为正数,求a分之|a|+b分之|b|+c分之|c|的值
- 4关于细柳营
- 5学校乐队有8名女生,女生与队员总数的比是1:3,学校乐队有_名队员.
- 6怎样用小铁块、细线、弹簧测力计和一个足够深的水杯测出醋的密度
- 71.“道而弗牵,强而弗抑,开而弗达”出自( ).A.《学记》 B.《论语》 C.《礼记》 D
- 8仿照“还有寂寞的瓦片风筝,没有风轮,又放得很低,伶仃地显出憔悴可怜的模样.”写一句话
- 9I often wonder:"Is this the thing i did,I want to know:"Why did i go into banking改间接引语
- 10将一个圆沿半径剪开,得到若干个小扇形,然后拼成一个近似的长方形,这个长方形的长是9.42分米,周长是24.84分米.这个圆的周长是_,面积是_平方分米.