当前位置: > 用放缩法证明√(x^2+xy+y^2)+√(y^2+yz+z^2)+√(z^2+zx+x^2)>=(3/2)(x+y+z)...
题目
用放缩法证明√(x^2+xy+y^2)+√(y^2+yz+z^2)+√(z^2+zx+x^2)>=(3/2)(x+y+z)

提问时间:2020-11-04

答案
√(x^2+xy+y^2)+√(y^2+yz+z^2)+√(z^2+zx+x^2)
>=√(1/4*x^2+xy+y^2)+√(1/4*y^2+yz+z^2)+√(1/4*z^2+zx+x^2)
=√(1/2*x+y)^2+√(1/2*y+z)^2+√(1/2*z+x)^2
=1/2*x+y+1/2*y+z+1/2*z+x
=(3/2)(x+y+z)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.