当前位置: > 如图所示等腰梯形ABCD中,AD=BC,AB∥CD,对角线AC与BD交于O,∵∠ACD=60°,点S、P、Q分别是OD,OA,BC的中点. 求证:△PQS是等边三角形....
题目
如图所示等腰梯形ABCD中,AD=BC,AB∥CD,对角线AC与BD交于O,∵∠ACD=60°,点S、P、Q分别是OD,OA,BC的中点.
求证:△PQS是等边三角形.

提问时间:2020-11-04

答案
证明:连CS,BP,

∵四边形ABCD是等腰梯形,且AC与BD相交于O,
∴AC=BD,
在△CAB和△DBA中,
CA=DB
AB=AB
BC=AD

∴△CAB≌△DBA(SSS),
∴∠CAB=∠DBA,
同理可得出:∠ACD=∠BDC,
∴AO=BO,CO=DO,
∵∠ACD=60°,
∴△OCD与△OAB均为等边三角形.
∵S是OD的中点,
∴CS⊥DO,
在Rt△BSC中,Q为BC中点,SQ是斜边BC的中线,
∴SQ=
1
2
BC,
同理BP⊥AC,
在Rt△BPC中,PQ=
1
2
BC,
又∵SP是△OAD的中位线,
∴SP=
1
2
AD=
1
2
BC.
∴SP=PQ=SQ.
故△SPQ为等边三角形.
由于梯形ABCD是等腰梯形∠ACD=60°,可知△OCD与△OAB均为等边三角形,连接CS,BP根据等边三角形的性质可知△BCS与△BPC为直角三角形,再利用直角三角形的性质可知QS=BP=
1
2
BC,由中位线定理可知,QS=QP=PS=
1
2
BC,故△PQS是等边三角形.

等腰梯形的性质;等边三角形的判定;直角三角形斜边上的中线;三角形中位线定理.

本题主要考查等腰梯形的性质,解答本题的关键是掌握三角形的三角形的中位线定理及直角三角形斜边中线等于斜边一半.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.