当前位置: > 一个3阶矩阵只有2个线性无关的特征向量,而这个矩阵只有一个3重根的特征值,求矩阵的秩...
题目
一个3阶矩阵只有2个线性无关的特征向量,而这个矩阵只有一个3重根的特征值,求矩阵的秩

提问时间:2020-11-04

答案
设三阶方阵A的三重特征根为c
首先看这唯一的特征值c是不是0
1 如果c是0 那么Ax=cx=0 那么由于矩阵只有2个线性无关的特征向量,即解空间的维数等于2 那么rkA=n-dim解空间=3-2=1
2 如果c非0 那么A的行列式值为c的3次方 就是说A是非奇异的 所以满秩为3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.