当前位置: > 对于实对称矩阵或可相似对角化的矩阵,其秩就是非零特征值的个数(其中n重根以n个记),如果0不是该矩阵的特征值,此矩阵满秩....
题目
对于实对称矩阵或可相似对角化的矩阵,其秩就是非零特征值的个数(其中n重根以n个记),如果0不是该矩阵的特征值,此矩阵满秩.
为什么是这样呢?

提问时间:2020-11-04

答案
设原矩阵为A,相似对角矩阵为B,
则存在可逆矩阵P,使得:
B=P^(-1)·A·P
由于乘以一个可逆矩阵,
矩阵的秩不变,
∴  R(B)=R(A)


如果0不是该矩阵的特征值,

则R(A)=R(B)=n
所以,A是满秩矩阵.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.