当前位置: > 证明,函数在某一连续可导区间内存在的唯一极值点即为最值点...
题目
证明,函数在某一连续可导区间内存在的唯一极值点即为最值点

提问时间:2020-11-04

答案
反证 设函数f(x)在区间[a,b]连续可导,有唯一极值点c,但其不是最值点不妨设c点为极大值点但不是最大值点,设最大值点为d若d>c ,考察区间[c,d],f(x)在区间[c,d]连续可导,所以f(x)在[c,d]中有最小值e显然e不等于d,又因c...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.