当前位置: > 在三角形ABC中,已知三个边abc成等比数列,证明tanA/2*tanC/2>=1/3,...
题目
在三角形ABC中,已知三个边abc成等比数列,证明tanA/2*tanC/2>=1/3,
答案上面的提示是说利用
a+c>=2b,sinA+sinc>=2sinB

提问时间:2020-11-04

答案
在三角形ABC中已知三个边abc成等比数列因为tanA•tanC=(tanB)^2,设公比为q,tanA=tanB/q,tanC=q*tanB
由tanB=-tan(A+C)=(tanA+tanC) /(1-tanB)^2,可得q^2+(1-(tanB)^2)q+1=0,
再由Δ >0,可得范围
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.