题目
在矩形ABCD中,点E,F分别在线段AB,AD上,AE =EB=AF= FD=4.沿直线EF将 AEF翻着成 A‘EF,使平面A‘EF 平面
在矩形ABCD中,点E,F分别在线段AB,AD上,AE =EB=AF= FD=4。沿直线EF将 AEF翻着成 A‘EF,使平面A‘EF垂直 平面BEF。
(Ⅰ)求二面角A‘-FD-C的余弦值;
(Ⅱ)点M,N分别在线段FD,BC上,若沿直线MN将四边形MNCD向上翻着,使C与A’重合,求线段FM的长。
在矩形ABCD中,点E,F分别在线段AB,AD上,AE =EB=AF= FD=4。沿直线EF将 AEF翻着成 A‘EF,使平面A‘EF垂直 平面BEF。
(Ⅰ)求二面角A‘-FD-C的余弦值;
(Ⅱ)点M,N分别在线段FD,BC上,若沿直线MN将四边形MNCD向上翻着,使C与A’重合,求线段FM的长。
提问时间:2020-11-04
答案
取线段EF的中点H,AF的中点G,连结A'G,A'H,GH.
∵A'E=A'F及H是EF的中点
∴A'H⊥EF
又∵平面A'EF⊥平面BEF
∴A‘H⊥平面BEF
又AF真包含平面BEF
故A'H⊥AF
又∵G,H是AE,EF的中点
易知CH‖AB
∴GH⊥AF
于是AF⊥面A'CH
∴∠A'GH为二面角A'-DF-C的平面角
在Rt△A'GH中,A'H=2√2,GH=2,A'G=2√3
∴cos∠A'CH=√3/3
故二面角A'-DF-C的余弦值为√3/3
设FM=x
∵翻折后,C与A'重合
∴CM=A'M
而CM^2=DC^2+DM^2=82+(6-x)^2,
A'M^2=A'H^2+MH^2=A'H^2+MG^2+GH^2=(2√2)^2+(x+2)^2+2
得x=21/4
经检验,此时点N在线段BC上
∴FM=21/4
∵A'E=A'F及H是EF的中点
∴A'H⊥EF
又∵平面A'EF⊥平面BEF
∴A‘H⊥平面BEF
又AF真包含平面BEF
故A'H⊥AF
又∵G,H是AE,EF的中点
易知CH‖AB
∴GH⊥AF
于是AF⊥面A'CH
∴∠A'GH为二面角A'-DF-C的平面角
在Rt△A'GH中,A'H=2√2,GH=2,A'G=2√3
∴cos∠A'CH=√3/3
故二面角A'-DF-C的余弦值为√3/3
设FM=x
∵翻折后,C与A'重合
∴CM=A'M
而CM^2=DC^2+DM^2=82+(6-x)^2,
A'M^2=A'H^2+MH^2=A'H^2+MG^2+GH^2=(2√2)^2+(x+2)^2+2
得x=21/4
经检验,此时点N在线段BC上
∴FM=21/4
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1在水平桌面上放一个200N的重物,现用如图所示装置将物体匀速拉动,物体与桌面的摩擦力是48N,不考虑滑轮重力和滑轮与绳间摩擦,水平拉力F为_N.若绳子自由端移动速度为0.6m/s,则物体移
- 2翻译:我认为健康比漂亮更重要,
- 3如何轻易记忆化学的元素符号?
- 4sinα+cosα的极值 α属于第一象限
- 5直角三角形的面积为2平方厘米,斜边上的中线为2厘米,则此直角三角形的周长为多少?为什么?
- 6the point of a pin翻译
- 7化简√3SINX/2+COSX/2 别的答案不对
- 8某班人数在50到60人之间,男、女人数比是5:6,这个班有女生多少人,男生多少人?
- 9问一个很弱智的数学题目,不要笑我哦
- 10A+A=B+B+B=C+C+C+C
热门考点