当前位置: > 2cos^2x+sin2x最小值...
题目
2cos^2x+sin2x最小值

提问时间:2020-11-03

答案
原式=2×[(1+cos2x)/2]+sin2x
=1+cos2x+sin2x
=1+√2[(√2)/2cos2x+(√2)/2sin2x]
=1+√2sin[2x+(π/4)]
∵x∈R
∴2cos^2x+sin2x的最小值既是1-√2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.