当前位置: > 已知f(x)是二次函数,满足f(x+1)+f(2x-1)=-5x2-x,求函数f(x)的解析式、值域,并写出函数的单调递减区间....
题目
已知f(x)是二次函数,满足f(x+1)+f(2x-1)=-5x2-x,求函数f(x)的解析式、值域,并写出函数的单调递减区间.

提问时间:2020-11-03

答案
根据题意设f(x)=ax2+bx+c(a≠0),所以f(x+1)+f(2x-1)=5ax2+(3b-2a)x+2(a+c)=-5x2-x,∴5a=−53b−2a=−12(a+c)=0,解得a=−1b=−1c=1,∴f(x)=-x2-x+1,所以函数图象开口向下,最大值在x=−12处...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.