当前位置: > 一元二次方程根与系数的关系(一题),...
题目
一元二次方程根与系数的关系(一题),
若a,b是方程x^2=2x+5的两根,
并且以a^2=2a+5,a^3=9a+10(不需证明)
来求a^3 + b^3的值.

提问时间:2020-11-03

答案
由根与系数的关系
a+b=-(-2)/1=2
a^2=2a+5,所以a^3=9a+10
同理
b^2=2b+5,b^3=9b+10
所以原式=9a+10+9b+10
=9(a+b)+20
=18+20
=38
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.