当前位置: > 求tan√(1+x^2)乘xdx/√(1+x^2)的不定积分...
题目
求tan√(1+x^2)乘xdx/√(1+x^2)的不定积分

提问时间:2020-11-03

答案
凑微法
因为d√(1+x^2)=2xdx/√(1+x^2)
所以
∫[tan√(1+x^2)]xdx/√(1+x^2)
=(1/2)∫tan√(1+x^2)d√(1+x^2)
=(1/2)∫[sin√(1+x^2)]/[cos√(1+x^2)]d√(1+x^2)
=-(1/2)∫[1/cos√(1+x^2)]d[cos√(1+x^2)]
=-(1/2)ln|cos√(1+x^2)|+C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.