当前位置: > 证明函数f(x,y)=(lxyl)^1/2在点(0,0)处的两个偏导数都存在,但函数f(x,y)在点(0,0)处不可微...
题目
证明函数f(x,y)=(lxyl)^1/2在点(0,0)处的两个偏导数都存在,但函数f(x,y)在点(0,0)处不可微

提问时间:2020-11-03

答案
偏导存在,只需要正常求导就可以了,比如对x求导,由于y=0,故x趋近于0时,值仍为0.
y的偏导也一样.
在(0,0)不可微,意思是以任意方式趋近于(0,0),值不全一样.比如以x=y的形式,去接近(0,0),则不可导
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.