当前位置: > 线性代数中相似的两矩阵AB是否具有相同的秩...
题目
线性代数中相似的两矩阵AB是否具有相同的秩

提问时间:2020-11-03

答案
A与B相似,则存在可逆矩阵P使得 P^(-1) AP = B.
有个结论:当P,Q可逆时 r(A) = r(PA) = r(AQ).
[这是因为可逆矩阵可以表示成初等矩阵的乘积,而初等矩阵不改变矩阵的秩]
所以有 r(B) = r( P^(-1) AP ) = r(A).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.