题目
用三种方式表示二次函数?
提问时间:2020-11-03
答案
第一种叫一般式,标准形式为y=ax^+bx+c,求值时只要知任意3点,带入即可得三元一次方程组求解析式,较简单,这里不再举例.
第二种方法叫顶点式,标准形式为y=a(x-h)^2+c,已知一个顶点和另一点时用.
顶点式求法举例:一个二次函数顶点为(3,5),且过(4,0),求其解析式.
设该函数关系式为y=a(x-h)^2+c,顶点(3,5),过点(4,0),则h=3,c=5,代入x=4,y=0即可求出a的值,于是就能求出其解析式.
注:如果你还是不明白,可以采用以下方法:因为该函数顶点(3,5),所以该函数对称轴为x=3,那么函数必过(4,0)的对称点(2,0),于是就有了3个点,即可用一般式求解.
第三个方法叫交点式,标准形式为y=a(x+m)(x+n),当题目中有函数与x轴的两个交点和另一点时用,举例如下:一个二次函数过(4,0),(-1,0)和(0,3),求其解析式.
设该函数关系式为y=a(x+m)(x+n)过(4,0),(-1,0)和(0,3),当x=4时y为0,那么(x+m)或(x+n)中必有一个为0,设它是(x+m)那么m=-4.同理,n=1.于是原函数解析式为y=a(x-4)(x+1),代入x=0,y=3即可求解.
注:交点式时可以用一般式求,但麻烦些.
如果你还有什么不懂的,直接给我留言好了,初中的东西我保证教会.
本帖纯属原创,谢绝抄袭.
第二种方法叫顶点式,标准形式为y=a(x-h)^2+c,已知一个顶点和另一点时用.
顶点式求法举例:一个二次函数顶点为(3,5),且过(4,0),求其解析式.
设该函数关系式为y=a(x-h)^2+c,顶点(3,5),过点(4,0),则h=3,c=5,代入x=4,y=0即可求出a的值,于是就能求出其解析式.
注:如果你还是不明白,可以采用以下方法:因为该函数顶点(3,5),所以该函数对称轴为x=3,那么函数必过(4,0)的对称点(2,0),于是就有了3个点,即可用一般式求解.
第三个方法叫交点式,标准形式为y=a(x+m)(x+n),当题目中有函数与x轴的两个交点和另一点时用,举例如下:一个二次函数过(4,0),(-1,0)和(0,3),求其解析式.
设该函数关系式为y=a(x+m)(x+n)过(4,0),(-1,0)和(0,3),当x=4时y为0,那么(x+m)或(x+n)中必有一个为0,设它是(x+m)那么m=-4.同理,n=1.于是原函数解析式为y=a(x-4)(x+1),代入x=0,y=3即可求解.
注:交点式时可以用一般式求,但麻烦些.
如果你还有什么不懂的,直接给我留言好了,初中的东西我保证教会.
本帖纯属原创,谢绝抄袭.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1读了这段话,我敢肯定春天会来到巨人的花园里,因为什么?
- 2函数f(x)=sin(2x-∏/4)-2根号2sin²x的最小正周期
- 3老师在教师里上课时,听不到回音的原因是(选择题)
- 42根号5+2根号5等于多少
- 5碱石灰的成分?会吸收CO2和水吗?
- 6下列句子中打括号的成语运用不正确的一项是( )
- 7海洋馆里有8只海象,总共运来170千克鱼给它们吃,前两天这8只海象共吃了80千克鱼,两天后把其中的2只海象运走.剩下的鱼还可以让余下的海象吃几天?
- 8公差不为的等差数列中a5=7且三个数a1,a4,a3成等比数列求an
- 9"金无赤足"是什么意思啊
- 10若sin(α-π)=2cos(2π-α),求[sin(π-α)+5cos(2π-α)]/[3cos(π-α)-sin(-α)]的值
热门考点