当前位置: > 线性代数中,Ax=0有非零解,则r(A)...
题目
线性代数中,Ax=0有非零解,则r(A)

提问时间:2020-11-03

答案
r(A) = n则意味着A是满秩矩阵,A最终通过初等行变换可以化为上三角矩阵,这个上三角矩阵最后一行只有一个元素非零,这说明x中的最后一个未知量x(n) = 0;上三角矩阵导数第二行有两个元素非零,因为x(n) = 0,所以有x(n-1) =0,等等,一直推到最后,就是X中所有元素均为零.也就是只有全零解.所以
Ax=0有非零解,则r(A)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.