当前位置: > 求常数项级数n/(3^n)的之和(n=1 趋于无穷)...
题目
求常数项级数n/(3^n)的之和(n=1 趋于无穷)

提问时间:2020-11-03

答案
首先有幂级数展开:1/(1-x) = ∑{0 ≤ n} x^n.
求导得1/(1-x)² = ∑{0 ≤ n} nx^(n-1) = ∑{1 ≤ n} nx^(n-1).
于是x/(1-x)² = ∑{1 ≤ n} nx^n.
代入x = 1/3得3/4 = ∑{1 ≤ n} n/3^n.
也有别的办法.
例如设a = ∑{1 ≤ n} n/3^n,则a/3 = ∑{1 ≤ n} n/3^(n+1)
= ∑{1 ≤ n} (n+1)/3^(n+1)-∑{1 ≤ n} 1/3^(n+1)
= ∑{2 ≤ n} n/3^n-1/9·1/(1-1/3)
= a-1/3-1/6
= a-1/2.
解得a = 3/4.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.