当前位置: > 高数--微积分极限...
题目
高数--微积分极限
用极限的定义证明:
(1)若k>0,则1/(n^k)收敛于0
(2)(2n+1)/(3n+1)收敛于2/3

提问时间:2020-11-03

答案
(1)对于任意的ε>0,取N=[(1/ε)^(-k)]+1 ( [ ] 这个是表示取整的意思)
则当n>N时,有| 1/(n^k) |0,取N=[(1/9ε)] 则当n>N时,
| (2n+1)/(3n+1)-2/3|=1/3(3n+1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.