题目
探究天体运动椭圆轨道特征
包括椭圆的轨道方程,焦点,半长轴和半短轴等相关知识
包括椭圆的轨道方程,焦点,半长轴和半短轴等相关知识
提问时间:2020-11-03
答案
一种粗略测定天体轨道的方法.在轨道计算中,人们事先不必对天体轨道作任何初始估计,而是从若干观测资料出发,根据力学和几何条件定出天体的初始轨道,以便及时跟踪天体,或作为轨道改进的初值.为了计算六个轨道要素(见二体问题),至少必须有三次光学观测,因为每次观测只能得到天体坐标的两个分量.
轨道计算是从研究彗星的运动开始的.在牛顿以前,对天体运动的研究基本上带有几何描述的性质.第谷首先试图计算彗星轨道,但未获成功.困难在于只能观测彗星的方向,而不知道它同地球的距离,由于缺少力学规律的指引,无法根据这些定向资料求得天体的空间轨道.在牛顿运动定律和万有引力定律发现螬o开普勒定律有了力学解释,得到了椭圆运动的严格数学表达式,终于能利用少数几次时间相隔不长的观测来测定彗星的轨道.
拉普拉斯方法 第一个正式的轨道计算方法是牛顿提出的.他根据三次观测的资料,用图解法求出天体的轨道.哈雷用这个方法分析了1337~1698年间出现的24颗彗星,发现1531年、1607年和1682年出现的彗星是同一颗彗星,它就是有名的哈雷彗星.在这以后,欧拉、朗伯和拉格朗日等人也在轨道计算方面做了不少研究.拉普拉斯于1780年发表第一个完整的轨道计算的分析方法.这个方法不限制观测的次数,首先根据几次观测,定出某一时刻天体在天球上的视位置(例如赤经、赤纬)及其一次、二次导数,然后从这六个量严格而又简单地求出此时天体的空间坐标和速度,从而定出圆锥曲线轨道的六个要素.这样,拉普拉斯就将轨道计算转化为一个微分方程的初值测定问题来处理.从分析观点来看这是一个好方法,然而轨道计算是一个实际问题,要考虑结果的精确和计算的方便.拉普拉斯方法在实用上不甚方便.由于数值微分会放大误差,这就需要用十分精确的观测资料才能求出合理的导数.尽管许多人曾设ń档驼庵止叩墓鄄庖螬o并取得一定进展,但终究由于计算繁复,在解决实际问题时还是很少使用.
奥伯斯方法和高斯方法 与拉普拉斯不同,奥伯斯和高斯则认为,如果能根据观测资料确定天体在两个不同时刻的空间位置,那么对应的轨道也就可以确定了.也就是说,奥伯斯和高斯把轨道计算转化为一个边值测定问题来处理.因此,问题的关键是如何根据三次定向观测来定出天体在空间的位置.这既要考虑轨道的几何特性,又要应用天体运动的力学定律.这些条件中最基本的一条是天体必须在通过太阳的平面上运动.由于从观测掌握了天体在三个时刻的视方向,一旦确定了轨道平面的取向,除个别特殊情况外,天体在三个时刻的空间位置也就确定了.轨道平面的正确取向的条件是所确定的三个空间位置能满足天体运动的力学定律,例如面积定律.
彗星轨道大都接近抛物线,所以在计算轨道时,常将它们作为抛物线处理.完整的抛物线轨道计算方法是奥伯斯于1797年提出的.他采用牛顿的假设,得到了彗星地心距的关系式;再结合表示天体在抛物线轨道上两个时刻的向径和弦关系的欧拉方程,求出彗星的地心距;从而求出彗星的抛物线轨道.到现在为止,奥伯斯方法虽有不少改进,但基本原理并没有变,仍然是一个常用的计算抛物线轨道的方法.
1801年1月1日,皮亚齐发现了第一号小行星(谷神星),不久高斯就算出了它的椭圆轨道,他的方法发表于1809年.高斯使用逐次近似法,先求出天体向径所围成的扇形面积与三角形面积之比,然后利用力学条件求得天体应有的空间位置,再从空间位置求得轨道.高斯不仅从理论上、而且从实际上解决了轨道计算问题.可以说,用三次观测决定轨道的实际问题是高斯首先解决的.高斯以后,虽然有人提出一些新方法,但基本原理仍没有变.
人造卫星轨道计算 计算小行星轨道的经典方法,原则上都能用来计算人造卫星的轨道.在考虑到人造卫星的运动特点之后,又提出了一些新的方法.人造卫星运动快,周期短,记时误差对轨道计算结果影响显著.巴特拉科夫在高斯方法的基础上,用增加观测资料的办法,对记时有误差的轨道计算法作了改进.近地卫星一天绕地球飞行十多圈,容易从观测定准它的周期,因而也就知道了轨道半长径,相应地提出了已知半长径的轨道计算法.人造卫星离地球近,视差现象明显,利用两站或多站同步观测容易求得卫星地心距,可以简化经典计算方法.针对卫星摄动影响大的情况,又出现了考虑摄动的轨道计算法.尽管这些方法多种多样,仍不外乎从观测资料求得两个点的向径,或一个点的向径和速度,从而得到轨道要素.
通过对人造卫星激光测距和多普勒测速,利用多站同步观测,或结合光学观测等方法,可以直接得到卫星的向径和速度,从而求得卫星的轨道.应用高速电子计算机,可以进行复杂的迭代运算.因此,目前更多的是综合各种类型的观测资料作轨道改进,而不把精力放在初始轨道的计算上.现代技术条件已能使入轨后的卫星轨道同预定轨道相差不大.这样,预定轨道就能作为初始轨道使用.
轨道计算是从研究彗星的运动开始的.在牛顿以前,对天体运动的研究基本上带有几何描述的性质.第谷首先试图计算彗星轨道,但未获成功.困难在于只能观测彗星的方向,而不知道它同地球的距离,由于缺少力学规律的指引,无法根据这些定向资料求得天体的空间轨道.在牛顿运动定律和万有引力定律发现螬o开普勒定律有了力学解释,得到了椭圆运动的严格数学表达式,终于能利用少数几次时间相隔不长的观测来测定彗星的轨道.
拉普拉斯方法 第一个正式的轨道计算方法是牛顿提出的.他根据三次观测的资料,用图解法求出天体的轨道.哈雷用这个方法分析了1337~1698年间出现的24颗彗星,发现1531年、1607年和1682年出现的彗星是同一颗彗星,它就是有名的哈雷彗星.在这以后,欧拉、朗伯和拉格朗日等人也在轨道计算方面做了不少研究.拉普拉斯于1780年发表第一个完整的轨道计算的分析方法.这个方法不限制观测的次数,首先根据几次观测,定出某一时刻天体在天球上的视位置(例如赤经、赤纬)及其一次、二次导数,然后从这六个量严格而又简单地求出此时天体的空间坐标和速度,从而定出圆锥曲线轨道的六个要素.这样,拉普拉斯就将轨道计算转化为一个微分方程的初值测定问题来处理.从分析观点来看这是一个好方法,然而轨道计算是一个实际问题,要考虑结果的精确和计算的方便.拉普拉斯方法在实用上不甚方便.由于数值微分会放大误差,这就需要用十分精确的观测资料才能求出合理的导数.尽管许多人曾设ń档驼庵止叩墓鄄庖螬o并取得一定进展,但终究由于计算繁复,在解决实际问题时还是很少使用.
奥伯斯方法和高斯方法 与拉普拉斯不同,奥伯斯和高斯则认为,如果能根据观测资料确定天体在两个不同时刻的空间位置,那么对应的轨道也就可以确定了.也就是说,奥伯斯和高斯把轨道计算转化为一个边值测定问题来处理.因此,问题的关键是如何根据三次定向观测来定出天体在空间的位置.这既要考虑轨道的几何特性,又要应用天体运动的力学定律.这些条件中最基本的一条是天体必须在通过太阳的平面上运动.由于从观测掌握了天体在三个时刻的视方向,一旦确定了轨道平面的取向,除个别特殊情况外,天体在三个时刻的空间位置也就确定了.轨道平面的正确取向的条件是所确定的三个空间位置能满足天体运动的力学定律,例如面积定律.
彗星轨道大都接近抛物线,所以在计算轨道时,常将它们作为抛物线处理.完整的抛物线轨道计算方法是奥伯斯于1797年提出的.他采用牛顿的假设,得到了彗星地心距的关系式;再结合表示天体在抛物线轨道上两个时刻的向径和弦关系的欧拉方程,求出彗星的地心距;从而求出彗星的抛物线轨道.到现在为止,奥伯斯方法虽有不少改进,但基本原理并没有变,仍然是一个常用的计算抛物线轨道的方法.
1801年1月1日,皮亚齐发现了第一号小行星(谷神星),不久高斯就算出了它的椭圆轨道,他的方法发表于1809年.高斯使用逐次近似法,先求出天体向径所围成的扇形面积与三角形面积之比,然后利用力学条件求得天体应有的空间位置,再从空间位置求得轨道.高斯不仅从理论上、而且从实际上解决了轨道计算问题.可以说,用三次观测决定轨道的实际问题是高斯首先解决的.高斯以后,虽然有人提出一些新方法,但基本原理仍没有变.
人造卫星轨道计算 计算小行星轨道的经典方法,原则上都能用来计算人造卫星的轨道.在考虑到人造卫星的运动特点之后,又提出了一些新的方法.人造卫星运动快,周期短,记时误差对轨道计算结果影响显著.巴特拉科夫在高斯方法的基础上,用增加观测资料的办法,对记时有误差的轨道计算法作了改进.近地卫星一天绕地球飞行十多圈,容易从观测定准它的周期,因而也就知道了轨道半长径,相应地提出了已知半长径的轨道计算法.人造卫星离地球近,视差现象明显,利用两站或多站同步观测容易求得卫星地心距,可以简化经典计算方法.针对卫星摄动影响大的情况,又出现了考虑摄动的轨道计算法.尽管这些方法多种多样,仍不外乎从观测资料求得两个点的向径,或一个点的向径和速度,从而得到轨道要素.
通过对人造卫星激光测距和多普勒测速,利用多站同步观测,或结合光学观测等方法,可以直接得到卫星的向径和速度,从而求得卫星的轨道.应用高速电子计算机,可以进行复杂的迭代运算.因此,目前更多的是综合各种类型的观测资料作轨道改进,而不把精力放在初始轨道的计算上.现代技术条件已能使入轨后的卫星轨道同预定轨道相差不大.这样,预定轨道就能作为初始轨道使用.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1制统计表时,必须把_进行分类填在表内,并写上统计的_,注明_和_.
- 21.已知圆柱与圆锥的高相等 底面半径的比是1:2,他们的体积比是():() 2.一个长方体,如果高增加2厘米就成了一个正方体,而且表面积增加24平方厘米,原来这个长方形体积是()立方厘米.3.一个棱长
- 3CuO.Al和Fe2O3. Al有区别?(指反应过程)
- 4亚欧板块和非洲板块张裂的是什么?
- 5检测目的基因是否表达的方法是
- 6平常照镜子脸挺端正的,但是照相就脸歪,嘴歪特别厉害,把照片左右翻转一下脸就正过来和照镜子时一样端...
- 7二氧化三碳在氧气中燃烧的化学方程式怎么写?
- 8求平行线L;2X-3y-6= 0与L2; 2X-3Y-2=0之间得距离.
- 9如图,∠AOE=160°,∠AOB:∠BOC=1:3,∠COD:∠DOE=3:1,∠AOB+∠DOE=_.
- 10称心如意时高兴的样子是什么词语
热门考点
- 1已知函数f(x)=(1/2)x,a,b∈R*,A=f(a+b/2),B=f(ab),C=f(2ab/a+b),则A、B、C的大小关系为_.
- 2”今观晨鸡,时夜而鸣,(急)
- 3a=﹣2时,﹣a-2a+1等于——;当2a+3b=1时,8-4a-6b=——
- 4this is a book of tom 还是tom‘s
- 5英语作文《我的一天》六年级的六句话就够了
- 6“我们偶尔一起去户外活动”翻译成英文
- 703g101梁下部配筋4Ф25+2Ф20
- 8函数y=log2x+logx2x的值域为( ) A.(-∞,-1] B.[3,+∞) C.[-1,3] D.(-∞,-1]∪[3,+∞)
- 92x^3y^2和-x^3my^2是同类项,则m的值是
- 10一个立方体棱长的总和是36厘米,它的体积是多少立方厘米?它的表面积是多少平方厘米?