当前位置: > 已知直角三角形的两直角边长a`b满足/a^2-16a+64/+√b^2-36=0,求斜边长c和斜边上高h的长...
题目
已知直角三角形的两直角边长a`b满足/a^2-16a+64/+√b^2-36=0,求斜边长c和斜边上高h的长

提问时间:2020-11-03

答案
a^2-16a+64=(a-8)^2 这个式子大于等于零
√b^2-36 这个也大于等于零
所以 当且仅当
上面两式都为零时 才有
/a^2-16a+64/+√b^2-36=0
所以解得a=8 b=6
斜边c=10
求斜边上的高利用三角形面积
1/2*ab=1/2*ch
代入数据 解得
h=4.8(或是24/5)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.