当前位置: > 如图,抛物线y=-ax²+3ax+2....
题目
如图,抛物线y=-ax²+3ax+2.
如图,抛物线y=-ax²+3ax+2与y轴相较于点A,与X轴交与B,C两点(点B在点C的左边) 若tan∠OAC=1/2,求a的值.

提问时间:2020-11-03

答案
答:抛物线方程y=-ax^2+3ax+2=-a(x-3/2)^2+2+9a/4
所以抛物线对称轴x=3/2,故点C一定在对称轴的右侧.
令x=0,y=2,所以点A(0,2)
令y=-ax^2+3ax+2=0,x1=[3a-√(9a^2+8a)]/(2a),x2=[3a+√(9a^2+8a)]/(2a)
所以点C为(x2,0)
tan∠OAC=OC/OA=x2/2=[3a+√(9a^2+8a)]/(4a)=1/2
解得:a=-1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.