当前位置: > 设非常熟函数f(x)满足f(2)=2,对任意的a、b∈R,满足f(ab)=af(b)+bf(a),....
题目
设非常熟函数f(x)满足f(2)=2,对任意的a、b∈R,满足f(ab)=af(b)+bf(a),.
设非常熟函数f(x)满足f(2)=2,对任意的a、b∈R,满足f(ab)=af(b)+bf(a),设a(n)=f(2^n)/2^n,b(n)=f(2^n)/n,其中n∈N^*,考察下列命题:① f(0)=f(1);② f(x)为偶函数;③ 数列{an}为等差数列;④ 数列{bn}为等比数列.其中正确的是(___________)(填序号)

提问时间:2020-11-03

答案
a=b=0,f(0)=0a=2,b=1,f(2)=2f(1)+f(2),f(1)=0①√a=-1,b=-1,f(1)=-f(-1)-f(-1)=-2f(-1),f(-1)=0a=-1,b=x,f(-x)=-f(x)+xf(-1)=-f(x),奇函数②×a(n+1)=f(2^(n+1))/2^(n+1)=[2f(2^n)+2^nf(2)]/[2*2^n]=f(2^n)/2^n+1=an...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.