当前位置: > 已知在数列{an}中,a1=1,a(n+1)-2an=3*2^(n-1),则{an}的通项公式为?...
题目
已知在数列{an}中,a1=1,a(n+1)-2an=3*2^(n-1),则{an}的通项公式为?

提问时间:2020-11-03

答案
a(n+1)-2a(n)=3*2^(n-1)
令a(n+1)+c=2(a(n)+c)
c=3*2^(n-1)
a(n+1)+3*2^(n-1)=2(a(n)+3*2^(n-1))
a(n)+3*2^(n-1)为等比数列,首项为a1+3*2^(1-1)=4,公比为2
a(n)+3*2^(n-1)=4*2^(n-1)
a(n)=4*2^(n-1)-3*2^(n-1)=2^(n-1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.