当前位置: > 数列{an},a1=2,an+1=2an+n(n是正整数),则其通项公式是什么...
题目
数列{an},a1=2,an+1=2an+n(n是正整数),则其通项公式是什么

提问时间:2020-11-03

答案
A1=2,递推公式A(n+1)=2An+n.(1)A1=2,A2=5,A3=12.(2)A(n+1)=2An+n,===>A(n+1)=2An+n.A(n+2)=2A(n+1)+(n+1).两式相减得:A(n+2)-A(n+1)+1=2[A(n+1)-An+1].===>A(n+1)-An+1=2^(n+1).(n=1,2,3,...).∴A2-A1+1=2^2,A3-A2+1=2^3,A4-A3+1=2^4,...An-A(n-1)+1=2^n.累加得:An-A1+(n-1)=2^(n+1)-2.===>An=[2^(n+1)]-n-1.经验证,其通项为An=[2^(n+1)]-n-1.(n=1,2,3,...).
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.