当前位置: > 证明方程 x^5+x+1=0在区间(-1,0)内只有一个实根...
题目
证明方程 x^5+x+1=0在区间(-1,0)内只有一个实根

提问时间:2020-11-03

答案
令f(x)=x^5+x+1
f(x)在 (-1,0)上连续
f'(x)=5x^4+1>0,f(x) 在(-1,0)上单调递增
f(-1)=-10
所以f(x)=x^5+x+1在(-1,0)上只有一个零点
所以
方程 x^5+x+1=0在区间(-1,0)内只有一个实根
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.